Skip to content

OM in the News: 3-D Printers and Human Organs

June 4, 2015
Atala's  3-D bioprinter. His 2011 TED talk on bioengineered organs has been viewed more than 2 million times.

Atala’s 3-D bioprinter. His 2011 TED talk on bioengineered organs has been viewed more than 2 million times.

At Wake Forest U.’s Institute for Regenerative Medicine, Dr. Anthony Atala’s research group is pushing the bounds of 3-D printing, with the goal of using that technology to replace human organs that fail, reports Smithsonian (May, 2015). The team works with custom-built bioprinters, powerful machines that operate in much the same way as standard 3-D printers: An object is scanned or designed using modeling software. That data is then sent to the printer, which uses syringes to lay down successive coats of matter until a three-dimensional object emerges. Traditional 3-D printers tend to work in plastics or wax. What’s different in this lab the capability to print something that’s alive.

The machine in the photo has a  frame of heavy metal, with  transparent walls. Inside are 6 syringes arranged in a row. One holds a biocompatible plastic that, when printed, forms the interlocking structure of a scaffold—the skeleton, essentially—of a printed human organ or body part. The others can be filled with a gel containing human cells or proteins to promote their growth. The external structure of the ear is one of the first structures that Wake Forest has tried to master, as a stepping stone toward more complicated ones. Staffers have implanted bioprinted skin, ears, bone, and muscle on laboratory animals, where they grew successfully into the surrounding tissue.
The number of 3-D printers in medical facilities is expected to double in the next 5 years. The trials are a harbinger of a world where patients order up replacement parts for their body the same way they used to order a replacement carburetor for their car. Atala claims we are getting close, with “simple” organs like skin, the external ear, the tube-like trachea. At the same time, he likes to envision a vast bioprinting industry capable of cranking out big and complex organs without which the body would fail, like the liver or the kidney. Such an industry could make traditional transplants completely obsolete.
Classroom discussion questions:
1. Why is 3-D printing so important to the future of medicine?
2. How is 3-D printing being used today in advancing manufacturing?
Advertisements
No comments yet

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Supply Chain Management Research

Andreas Wieland’s supply chain management blog for academics and managers

better operations

Thoughts on continuous improvement: from TPS to XPS

%d bloggers like this: